
2
O B J E C T S ,  F U N C T I O N S , 

A N D  T Y P E S

In this chapter, you’ll learn about objects, 
functions, and types. We’ll examine how 

to declare variables (objects with identifiers) 
and functions, take the addresses of objects, and 

dereference those object pointers. You already learned 
about object types that are available to C program-
mers, as well as derived types. The first thing you’ll 
learn in this chapter is one of the last things that I 
learned: every type in C is either an object type or a 
function type.

Objects, Functions, Types, and Pointers
An object is storage in which you can represent values. To be precise, an 
object is defined by the C Standard (ISO/IEC 9899:2018) as a “region of 



14   Chapter 2

data storage in the execution environment, the contents of which can repre-
sent values,” with the added note, “when referenced, an object can be inter-
preted as having a particular type.” A variable is an example of an object.

Variables have a declared type that tells you the kind of object its value 
represents. For example, an object with type int contains an integer value. 
The type is important because the collection of bits that represents one type 
of object will likely have a different value if interpreted as a different type of  
object. For example, the number 1 is represented in IEEE 754 (the IEEE 
Standard for Floating-Point Arithmetic) by the bit pattern 0x3f800000 (IEEE 
754–2008). But if you were to interpret this same bit pattern as an integer, 
you’d get the value 1,065,353,216 instead of 1.

Functions are not objects but do have types. A function type is char-
acterized by both its return type as well as the number and types of its 
parameters.

The C language also has pointers, which can be thought of as an address—
a location in memory where an object or function is stored. A pointer type 
is derived from a function or object type called the referenced type. A pointer 
type derived from the referenced type T is called a pointer to T.

Because objects and functions are different things, object pointers and 
function pointers are also different things, and should not be used inter-
changeably. In the following section, you’ll write a simple program that 
attempts to swap the values of two variables to help you better understand 
objects, functions, pointers, and types. 

Declaring Variables
When you declare a variable, you assign it a type and provide it a name, or 
identifier, by which to reference the variable. 

Listing 2-1 declares two integer objects with initial values. This simple 
program also declares, but doesn’t define, a swap function to swap those 
values.

#include <stdio.h>

u void swap(int, int); // defined in Listing 2-2

int main(void) {
  int a = 21;
  int b = 17;

  v swap(a, b); 
  printf("main: a = d, b = d\n", a, b);
  return 0;
}

Listing 2-1: Program meant to swap two integers



Objects, Functions, and Types   15

This example program shows a main function with a single code block 
between the { } characters. This kind of code block is also known as a com-
pound statement. We define two variables, a and b, within the main function. 
We declare the variables as having the type int and initialize them to 21 and 
17, respectively. Each variable must have a declaration. The main function 
then calls the swap function v to try to swap the values of the two integers. 
The swap function is declared in this program u but not defined. We’ll look 
at some possible implementations of this function later in this section.

DECL A R ING MULT IPL E VA R I A BL E S

You can declare multiple variables in any single declaration, but doing so can 
get confusing if the variables are pointers or arrays, or the variables are differ-
ent types. For example, the following declarations are all correct:

char *src, c;
int x, y[5];
int m[12], n[15][3], o[21];

The first line declares two variables, src and c, which have different types. 
The src variable has a type of char *, and c has a type of char. The second 
line again declares two variables, x and y, with different types. The variable 
x has a type int, and y is an array of five elements of type int. The third line 
declares three arrays—m, n, and o—with different dimensions and numbers of 
elements. 

These declarations are easier to understand if each is on its own line: 

char *src;    // src has a type of char *
char c;       // c has a type of char
int x;        // x has a type int
int y[5];     // y is an array of 5 elements of type int
int m[12];    // m is an array of 12 elements of type int
int n[15][3]; // n is an array of 15 arrays of 3 elements of type int
int o[21];    // o is an array of 21 elements of type int

Readable and understandable code is less likely to have defects.

Swapping Values (First Attempt)
Each object has a storage duration that determines its lifetime, which is the 
time during program execution for which the object exists, has storage, has 
a constant address, and retains its last-stored value. Objects must not be ref-
erenced outside their lifetime.

Local variables such as a and b from Listing 2-1 have automatic storage 
duration, meaning that they exist until execution leaves the block in which 
they’re defined. We are going to attempt to swap the values stored in these 
two variables.



16   Chapter 2

Listing 2-2 is our first attempt to implement the swap function.

void swap(int a, int b) {
  int t = a; 
  a = b;
  b = t;
  printf("swap: a = d, b = d\n", a, b);
}

Listing 2-2: The swap function

The swap function declares two parameters, a and b, that you use to pass 
arguments to this function. C distinguishes between parameters, which are 
objects declared as part of the function declaration that acquire a value on 
entry to the function, and arguments, which are comma-separated expres-
sions you include in the function call expression. We also declare a tempo-
rary variable t of type int in the swap function and initialize it to the value of 
a. This variable is used to temporarily save the value stored in a so that it is 
not lost during the swap.

You can now compile and test the complete program by running the 
generated executable:

 ./a.out
swap: a = 17, b = 21
main: a = 21, b = 17

This result may be surprising. The variables a and b were initialized to 
21 and 17, respectively. The first call to printf within the swap function shows 
these two values swapped, but the second call to printf in main shows the 
original values unchanged. Let’s examine what happened.

C is a call-by-value (also called a pass-by-value) language, which means 
that when you provide an argument to a function, the value of that argu-
ment is copied into a distinct variable for use within the function. The 
swap function assigns the values of the objects you pass as arguments to the 
respective parameters. When the values of the parameters in the function 
are changed, the values in the caller are unaffected because they are dis-
tinct objects. Consequently, the variables a and b retain their original values 
in main during the second call to printf. The goal of the program was to 
swap the values of these two objects. By testing the program, we’ve discov-
ered it has a bug, or defect. 

Swapping Values (Second Attempt)
To repair this bug, you can use pointers to rewrite the swap function. We use 
the indirection (*) operator to both declare pointers and dereference them, 
as shown in Listing 2-3.

void swap(int *pa, int *pb) {
  int t = *pa;
  *pa = *pb;



Objects, Functions, and Types   17

  *pb = t;
  return;
}

Listing 2-3: The revised swap function using pointers

When used in a function declaration or definition, * acts as part of a 
pointer declarator indicating that the parameter is a pointer to an object 
or function of a specific type. In the rewritten swap function, we specify two 
parameters, pa and pb, and declare them both as type pointers to int.

 When you use the unary * operator in expressions within the function, 
the unary * operator dereferences the pointer to the object. For example, 
consider the following assignment:

pa = pb;

This replaces the value of the pointer pa with the value of the pointer pb. 
Now consider the actual assignment in the swap function:

*pa = *pb;

This dereferences the pointer pb, reads the referenced value, dereferences 
the pointer pa, and then overwrites the value at the location referenced by 
pa with the value referenced by pb.

When you call the swap function in main, you must also place an amper-
sand (&) character before each variable name:

swap(&a, &b);

The unary & is the address-of operator, which generates a pointer to its oper-
and. This change is necessary because the swap function now accepts point-
ers to objects of type int as parameters instead of simply values of type int. 

Listing 2-4 shows the entire swap program with emphasis on the objects 
created during execution of this code and their values.

#include <stdio.h>
void swap(int *pa, int *pb) {   // pa → a: 21    pb → b: 17
  int t = *pa;                  // t: 21
  *pa = *pb;                    // pa → a: 17    pb → b: 17
  *pb = t;                      // pa → a: 17    pb → b: 21
  
}
int main(void) {
  int a = 21;                   // a: 21
  int b = 17;                   // b: 17
  swap(&a, &b);
  printf("a = d, b = d\n", a, b);    // a: 17    b: 21
  return 0;
}

Listing 2-4: Simulated call-by-reference



18   Chapter 2

Upon entering the main block, the variables a and b are initialized to 21 
and 17, respectively. The code then takes the addresses of these objects and 
passes them to the swap function as arguments.

Within the swap function, the parameters pa and pb now both declared 
to have the type pointer to int and contain copies of the arguments passed 
to swap from the calling function (in this case, main). These address copies 
still refer to the exact same objects, so when the values of the objects they 
reference are swapped in the swap function, the contents of the original 
objects declared in main are accessed and also swapped. This approach 
simulates call-by-reference (also known as pass-by-reference) by generating 
object addresses, passing those by value, and then dereferencing the copied 
addresses to access the original objects.

Scope
Objects, functions, macros, and other C language identifiers have scope that 
delimits the contiguous region where they can be accessed. C has four types 
of scope: file, block, function prototype, and function.

The scope of an object or function identifier is determined by where 
it is declared. If the declaration is outside any block or parameter list, the 
identifier has file scope, meaning the scope is the entire text file in which it 
appears as well as any files included after that point. 

If the declaration appears inside a block or within the list of param-
eters, it has block scope, meaning that the identifier it declares is accessible 
only within the block. The identifiers for a and b from Listing 2-4 have 
block scope and can be used to refer to only these variables within the 
code block in the main function in which they’re defined. 

If the declaration appears within the list of parameter declarations in 
a function prototype (not part of a function definition), the identifier has 
function prototype scope, which terminates at the end of the function declara-
tor. Function scope is the area between the opening { of a function definition 
and its closing }. A label name is the only kind of identifier that has func-
tion scope. Labels are identifiers followed by a colon and identify a statement 
in a function to which control may be transferred. Chapter 5 covers labels 
and control transfer.

Scopes can be nested, with inner and outer scopes. For example, you can 
have a block scope inside another block scope, and every block scope is 
defined within a file scope. The inner scope has access to the outer scope, 
but not vice versa. As the name implies, any inner scope must be completely 
contained within the outer scopes that encompass it. 

If you declare the same identifier in both the inner scope and an outer 
scope, the identifier declared in the outer scope is hidden by the identifier 
within the inner scope, which takes precedence. In this case, naming the 
identifier will refer to the object in the inner scope; the object from the 
outer scope is hidden and cannot be referenced by its name. The easiest 
way to prevent this from becoming a problem is to use different names. 



Objects, Functions, and Types   19

Listing 2-5 demonstrates different scopes and how identifiers declared in 
inner scopes can hide identifiers declared in outer scopes. 

int j;  // file scope of j begins 

void f(int i) {         // block scope of i begins
  int j = 1;            // block scope of j begins; hides file-scope j
  i++;                  // i refers to the function parameter
  for (int i = 0; i < 2; i++) {  // block scope of loop-local i begins
    int j = 2;          // block scope of the inner j begin; hides outer j
    printf(" d\n", j);  // inner j is in scope, prints 2
  }                     // block scope of the inner i and j ends 
  printf(" d\n", j);    // the outer j is in scope, prints 1
}  // the block scope of i and j ends 

void g(int j);          // j has function prototype scope; hides file-scope j

Listing 2-5: Scope

There is nothing wrong with this code, provided the comments accu-
rately describe your intent. Best practice is to use different names for differ-
ent identifiers to avoid confusion, which leads to bugs. Using short names 
such as i and j is fine for identifiers with small scopes. Identifiers in large 
scopes should have longer, descriptive names that are unlikely to be hidden 
in nested scopes. Some compilers will warn about hidden identifiers.

Storage Duration
Objects have a storage duration that determines their lifetime. Altogether, 
four storage durations are available: automatic, static, thread, and allo-
cated. You’ve already seen that objects of automatic storage duration are 
declared within a block or as a function parameter. The lifetime of these 
objects begins when the block in which they’re declared begins execution, 
and ends when execution of the block ends. If the block is entered recur-
sively, a new object is created each time, each with its own storage. 

N O T E  Scope and lifetime are entirely different concepts. Scope applies to identifiers, 
whereas lifetime applies to objects. The scope of an identifier is the code region 
where the object denoted by the identifier can be accessed by its name. The lifetime 
of an object is the time period for which the object exists.

Objects declared in file scope have static storage duration. The lifetime 
of these objects is the entire execution of the program, and their stored 
value is initialized prior to program startup. You can also declare a variable 
within a block scope to have static storage duration by using the storage-
class specifier static, as shown in the counting example in Listing 2-6. 
These objects persist after the function has exited.



20   Chapter 2

void increment(void) {
  static unsigned int counter = 0;
  counter++;
  printf(" d ", counter);
}

int main(void) {
  for (int i = 0; i < 5; i++) {
    increment();
  }
  return 0;
}

Listing 2-6: A counting example

This program outputs 1 2 3 4 5. We initialize the static variable counter 
to 0 once at program startup, and increment it each time the  increment func-
tion is called. The lifetime of counter is the entire execution of the program, 
and it will retain its last-stored value throughout its lifetime. You could 
achieve the same behavior by declaring counter with file scope. However, it is 
good software engineering practice to limit the scope of an object wherever 
possible.

Static objects must be initialized with a constant value and not a 
variable:

int *func(int i) {
  const int j = i; // ok
  static int k = j; // error
  return &k;
}

A constant value refers to literal constants (for example, 1, 'a', or 0xFF), 
enum members, and the results of operators such as alignof or sizeof; not 
const-qualified objects.

Thread storage duration is used in concurrent programming and is not 
covered by this book. Allocated storage duration deals with dynamically allo-
cated memory and is discussed in Chapter 6.

Alignment
Object types have alignment requirements that place restrictions on the 
addresses at which objects of that type may be allocated. An alignment rep-
resents the number of bytes between successive addresses at which a given 
object can be allocated. CPUs may have different behavior when accessing 
aligned data (for example, the data address is a multiple of the data size) 
versus unaligned data. 

Some machine instructions can perform multibyte accesses on non-
word boundaries, but there may be a performance penalty. Some platforms 
cannot access unaligned memory. Alignment requirements may depend on 
the CPU word size (typically, 16, 32, or 64 bits).



Objects, Functions, and Types   21

Generally, C programmers need not concern themselves with align-
ment requirements, because the compiler chooses suitable alignments for 
its various types. Dynamically allocated memory from malloc is required to 
be sufficiently aligned for all standard types, including arrays and struc-
tures. However, on rare occasions, you might need to override the com-
piler’s default choices; for example, to align data on the boundaries of the 
memory cache lines that must start at power-of-two address boundaries, or 
to meet other system-specific requirements. Traditionally, these require-
ments were met by linker commands, or by overallocating memory with 
malloc followed by rounding the user address upward, or similar operations 
involving other nonstandard facilities.

C11 introduced a simple, forward-compatible mechanism for specifying 
alignments. Alignments are represented as values of the type size_t. Every 
valid alignment value is a nonnegative integral power of two. An object 
type imposes a default alignment requirement on every object of that type: 
a stricter alignment (a larger power of two) can be requested using the 
alignment specifier (_Alignas). You can include an alignment specifier in 
the declaration specifiers of a declaration. Listing 2-7 uses the alignment 
specifier to ensure that good_buff is properly aligned (bad_buff may have 
incorrect alignment for member-access expressions).

struct S {
  int i; double d; char c;
};

int main(void) {
  unsigned char bad_buff[sizeof(struct S)];
  _Alignas(struct S) unsigned char good_buff[sizeof(struct S)];

  struct S *bad_s_ptr = (struct S *)bad_buff;   // wrong pointer alignment
  struct S *good_s_ptr = (struct S *)good_buff; // correct pointer alignment
}

Listing 2-7: Use of the _Alignas keyword

Alignments are ordered from weaker to stronger (also called stricter) 
alignments. Stricter alignments have larger alignment values. An address 
that satisfies an alignment requirement also satisfies any valid, weaker align-
ment requirement.

Object Types
This section introduces the object types in C. Specifically, we’ll cover the 
Boolean type, character types, and numerical types (including both integer 
and floating-point types).

Boolean
Objects declared as _Bool can store only the values 0 and 1. This Boolean type 
was introduced in C99, and starts with an underscore to differentiate it in 



22   Chapter 2

existing programs that had already declared their own identifiers named 
bool or boolean. Identifiers that begin with an underscore and either an 
uppercase letter or another underscore are always reserved. The idea is that 
the C Standards committee can create new keywords such as _Bool, assum-
ing that you have avoided the use of reserved identifiers. If you haven’t, as 
far as the C Standards committee is concerned, it is your fault for not read-
ing the standard carefully.

If you include the header <stdbool.h>, you can also spell this type as 
bool and assign it the values true (which expands to the integer constant 1) 
and false (which expands to the integer constant 0). Here we declare two 
Boolean variables using both spellings of the type name:

#include <stdbool.h>
_Bool flag1 = 0;
bool flag2 = false;

Both spellings will work, but it is better to use bool, as this is the long-
term direction for the language.

Character Types
The C language defines three character types: char, signed char, and unsigned 
char. Each compiler implementation will define char to have the same align-
ment, size, range, representation, and behavior as either signed char or 
unsigned char. Regardless of the choice made, char is a separate type from 
the other two and is incompatible with both. 

The char type is commonly used to represent character data in C lan-
guage programs. In particular, objects of type char must be able to repre-
sent the minimum set of characters required in the execution environment 
(known as the basic execution character set), including upper- and lowercase 
letters, the 10 decimal digits, the space character, and various punctuation 
and control characters. The char type is inappropriate for integer data; it is 
safer to use signed char to represent small signed integer values, and unsigned 
char to represent small unsigned values.

The basic execution character set suits the needs of many conven-
tional data processing applications, but its lack of non-English letters is an 
obstacle to acceptance by international users. To address this need, the C 
Standards committee specified a new, wide type to allow large character 
sets. You can represent the characters of a large character set as wide char-
acters by using the wchar_t type, which generally takes more space than a 
basic character. Typically, implementations choose 16 or 32 bits to represent 
a wide character. The C Standard Library provides functions that support 
both narrow and wide character types.

Numerical Types
C provides several numerical types that can be used to represent integers, 
enumerators, and floating-point values. Chapter 3 covers some of these in 
more detail, but here’s a brief introduction.



Objects, Functions, and Types   23

Integers

Signed integer types can be used to represent negative numbers, positive num-
bers, and zero. The signed integer types include signed char, short int, int, 
long int, and long long int. 

Except for int itself, the keyword int may be omitted in the declarations 
for these types, so you might, for example, declare a type by using long long 
instead of long long int.

For each signed integer type, there is a corresponding unsigned integer 
type that uses the same amount of storage: unsigned char, unsigned short int, 
unsigned int, unsigned long int, and unsigned long long int. The unsigned 
types can be used to represent only positive numbers and zero. 

The signed and unsigned integer types are used to represent integers 
of various sizes. Each platform (current or historical) determines the size 
for each of these types, given some constraints. Each type has a minimum 
representable range. The types are ordered by width, guaranteeing that 
wider types are at least as large as narrower types so that an object of type 
long long int can represent all values that an object of type long int can rep-
resent, an object of type long int can represent all values that can be repre-
sented by an object of type int, and so forth. 

The int type usually has the natural size suggested by the architecture 
of the execution environment, so the size would be 16 bits wide on a 16-bit 
architecture, and 32 bits wide on a 32-bit architecture. You can specify 
actual-width integers by using type definitions from the <stdint.h> or 
<inttypes.h> headers, like uint32_t. These headers also provide type defini-
tions for the widest available integer types: uintmax_t and intmax_t.

Chapter 3 covers integer types in excruciating detail.

Enums

An enumeration, or enum, allows you to define a type that assigns names (enu-
merators) to integer values in cases with an enumerable set of constant val-
ues. The following are examples of enumerations:

enum day { sun, mon, tue, wed, thu, fri, sat }; 
enum cardinal_points { north = 0, east = 90, south = 180, west = 270 };
enum months { jan = 1, feb, mar, apr, may, jun, jul, aug, sep, oct, nov, dec };

If you don’t specify a value to the first enumerator with the = operator, 
the value of its enumeration constant is 0, and each subsequent enumera-
tor without an = adds 1 to the value of the previous enumeration constant. 
Consequently, the value of sun in the day enumeration is 0, mon is 1, and so 
forth. 

You can also assign specific values to each enumerator, as shown by 
the cardinal_points enumeration. Using = with enumerators may produce 
enumeration constants with duplicate values, which can be a problem if you 
incorrectly assume all the values are unique. The months enumeration sets 
the first enumerator at 1, and each subsequent enumerator that isn’t specifi-
cally assigned a value will be incremented by 1.



24   Chapter 2

The actual value of the enumeration constant must be representable as 
an int, but its type is implementation defined. For example, Visual C++ uses 
a signed int, and GCC uses an unsigned int.

Floating-Point Types

The C language supports three floating-point types: float, double, and long double. 
Floating-point arithmetic is similar to, and often used as a model for, the 
arithmetic of real numbers. The C language supports a variety of floating-
point representations including, on most systems, the IEEE Standard for 
Floating-Point Arithmetic (IEEE 754–2008). The choice of floating-point 
representation is implementation dependent. Chapter 3 covers floating-
point types in detail.

void
The void type is a rather strange type. The keyword void (by itself) means 
“cannot hold any value.” For example, you can use it to indicate that a 
function doesn’t return a value, or as the sole parameter of a function to 
indicate that the function takes no arguments. On the other hand, the 
derived type void * means that the pointer can reference any object. I’ll dis-
cuss derived types later in this chapter.

Function Types
Function types are derived types. In this case, the type is derived from the 
return type and the number and types of its parameters. The return type of 
a function cannot be an array type. 

When you declare a function, you use the function declarator to specify 
the name of the function and the return type. If the declarator includes 
a parameter type list and a definition, the declaration of each parameter 
must include an identifier, except parameter lists with only a single param-
eter of type void, which needs no identifier.

Here are a few function type declarations:

int f(void);
int *fip();
void g(int i, int j);
void h(int, int);

First, we declare a function f with no parameters that returns an int. 
Next, we declare a function fip with no specified parameters that returns a 
pointer to an int. Finally, we declare two functions, g and h, each returning 
void and taking two parameters of type int.

Specifying parameters with identifiers (as done here with g) can be 
problematic if an identifier is a macro. However, providing parameter 



Objects, Functions, and Types   25

names is good practice for self-documenting code, so omitting the identi-
fiers (as done with h) is not typically recommended.

In a function declaration, specifying parameters is optional. However, 
failing to do so is occasionally problematic. If you were to write the function 
declaration for fip in C++, it would declare a function accepting no argu-
ments and returning an int *. In C, fip declares a function accepting any 
number of arguments of any type and returning an int *. You should never 
declare functions with an empty parameter list in C. First, this is a depre-
cated feature of the language that may be removed in the future. Second, 
the code could be ported to C++, so explicitly list parameter types and use 
void when there are no parameters.

A function type with a parameter type list is known as a function pro-
totype. A function prototype informs the compiler about the number and 
types of parameters a function accepts. Compilers use this information to 
verify that the correct number and type of parameters are used in the func-
tion definition and any calls to the function. 

The function definition provides the actual implementation of the 
function. Take a look at the following function definition:

int max(int a, int b)
{ return a > b ? a : b; }

The return type specifier is int; the function declarator is max(int a, int b); 
and the function body is { return a > b ? a : b; }. The specification of a 
function type must not include any type qualifiers (see “Type Qualifiers” on 
page 32). The function body itself uses the condition operator (? :), which 
is explained further in Chapter 4. This expression states that if a is greater 
than b, return a; otherwise, return b.

Derived Types
Derived types are types that are constructed from other types. These include 
pointers, arrays, type definitions, structures, and unions, all of which we’ll 
cover here.

Pointer Types
A pointer type is derived from the function or object type that it points to, 
called the referenced type. A pointer provides a reference to an entity of the 
referenced type. 

The following three declarations declare a pointer to int, a pointer to 
char, and a pointer to void: 

int *ip;
char *cp;
void *vp;



26   Chapter 2

Earlier in the chapter, I introduced the address-of (&) and indirection 
(*) operators. You use the & operator to take the address of an object or 
function. If the object is an int, for example, the result of the operator has 
the type pointer to int:

int i = 17;
int *ip = &i;

We declare the variable ip as a pointer to int and assign it the address 
of i. You can also use the operator on the result of the operator:

ip = &*ip;

Dereferencing ip by using the indirection operator resolves to the 
actual object i. Taking the address of *ip by using the & operator retrieves 
the pointer, so these two operations cancel each other out. 

The unary * operator converts a pointer to a type into a value of that 
type. It denotes indirection and operates only on pointers. If the operand 
points to a function, the result of using the * operator is the function des-
ignator, and if it points to an object, the result is a value of the designated 
object. For example, if the operand is a pointer to int, the result of the indi-
rection operator has the type int. If the pointer is not pointing to a valid 
object or function, bad things may happen.

Arrays
An array is a contiguously allocated sequence of objects that all have the 
same element type. Array types are characterized by their element types 
and the number of elements in the array. Here we declare an array of 11 
elements of type int identified by ia, and an array of 17 elements of type 
pointer to float identified by afp:

int ia[11];
float *afp[17];

You use square brackets ([]) to identify an element of an array. 
For example, the following contrived code snippet creates the string 
"0123456789" to demonstrate how to assign values to the elements of an 
array:

char str[11];
for (unsigned int i = 0; i < 10; ++i) {

 u str[i] = '0' + i;
}
str[10] = '\0';

The first line declares an array of char with a bound of 11. This allocates 
sufficient storage to create a string with 10 characters plus a null character. 



Objects, Functions, and Types   27

The for loop iterates 10 times, with the values of i ranging from 0 to 9. Each 
iteration assigns the result of the expression '0' + i to str[i]. Following 
the end of the loop, the null character is copied to the final element of the 
array str[10]. 

In the expression at u, str is automatically converted to a pointer to the 
first member of the array (an object of type char), and i has an unsigned 
integer type. The subscript ([]) operator and addition (+) operator are 
defined so that str[i] is identical to *(str + i). When str is an array object 
(as it is here), the expression str[i] designates the ith element of the array 
(counting from 0). Because arrays are indexed starting at 0, the array char 
str[11] is indexed from 0 to 10, with 10 being the last element, as referenced 
on the last line of this example.

If the operand of the unary & operator is the result of a [] operator, the 
result is as if the & operator were removed and the [] operator were changed 
to a + operator. For example, &str[10] is the same as str + 10.

You can also declare multidimensional arrays. Listing 2-8 declares 
arr in the function main as a two-dimensional 5 × 3 array of type int, also 
referred to as a matrix.

void func(int arr[5]);
int main(void) {
  unsigned int i = 0;
  unsigned int j = 0;
  int arr[3][5];

  u func(arr[i]);
  v int x = arr[i][j];

  return 0;
}

Listing 2-8: Matrix operations

More precisely, arr is an array of three elements, each of which is an 
array of five elements of type int. When you use the expression arr[i] at u 
(which is equivalent to *(arr+i)), the following occurs:

1. arr is converted to a pointer to the initial array of five elements of type 
int starting at arr[i]. 

2. i is scaled to the type of arr by multiplying i by the size of one array of 
five int objects. 

3. The results from steps 1 and 2 are added.

4. Indirection is applied to the result to produce an array of five elements 
of type int. 

When used in the expression arr[i][j] at v, that array is converted to 
a pointer to the first element of type int, so arr[i][j] produces an object of 
type int. 



28   Chapter 2

T Y PE DE F INI T IONS

You use a typedef to declare an alias for an existing type; it never creates a 
new type. For example, each of the following declarations creates a new type 
alias:

typedef unsigned int uint_type; 
typedef signed char schar_type, *schar_p, (*fp)(void); 

On the first line, we declare uint_type as an alias for the type unsigned 
int. On the second line, we declare schar_type as an alias for signed char, 
schar_p as an alias for signed char *, and fp as an alias for signed char(*)
(void). Identifiers that end in _t in the standard headers are type definitions 
(aliases for existing types). Generally speaking, you should not follow this 
convention in your own code because the C Standard reserve identifiers that 
match the patterns int[0-9a-z_]*_t and uint[0-9a-z_]*_t, and Portable 
Operating System Interface (POSIX) reserves all identifiers that end in _t. If you 
define identifiers that use these names, they may collide with names used by 
the implementation, which can cause problems that are difficult to debug.

Structures 
A structure type (also known as a struct) contains sequentially allocated mem-
ber objects. Each object has its own name and may have a distinct type—
unlike arrays, which must all be of the same type. Structures are similar to 
record types found in other programming languages. Listing 2-9 declares 
an object identified by sigline that has a type of struct sigrecord and a 
pointer to the sigline object identified by sigline_p.

struct sigrecord {
  int signum;
  char signame[20];
  char sigdesc[100];
} sigline, *sigline_p;

Listing 2-9: struct sigrecord

The structure has three member objects: signum is an object of type int, 
signame is an array of type char consisting of 20 elements, and sigdesc is an 
array of type char consisting of 100 elements. 

Structures are useful for declaring collections of related objects and 
may be used to represent things such as a date, customer, or personnel 
record. They are especially useful for grouping objects that are frequently 
passed together as arguments to a function, so you don’t need to repeatedly 
pass individual objects separately. 



Objects, Functions, and Types   29

Once you have defined a structure, you’ll likely want to reference its 
members. You reference members of an object of the structure type by 
using the structure member (.) operator. If you have a pointer to a struc-
ture, you can reference its members with the structure pointer(->)operator. 
Listing 2-10 demonstrates the use of each operator.

sigline.signum = 5;
strcpy(sigline.signame, "SIGINT");
strcpy(sigline.sigdesc, "Interrupt from keyboard");

u sigline_p = &sigline; 

sigline_p->signum = 5;
strcpy(sigline_p->signame, "SIGINT");
strcpy(sigline_p->sigdesc, "Interrupt from keyboard");

Listing 2-10: Referencing structure members

The first three lines of Listing 2-10 directly access members of the sigline 
object by using the . operator. At u, we assign the pointer to sigline_p to the 
address of the sigline object. In the final three lines of the program, we 
indirectly access the members of the sigline object by using the -> operator 
through the sigline_p pointer.

Unions
Union types are similar to structures, except that the memory used by the 
member objects overlaps. Unions can contain an object of one type at 
one time, and an object of a different type at a different time, but never 
both objects at the same time, and are primarily used to save memory. 
Listing 2-11 shows the union u that contains three structures: n, ni, and nf. 
This union might be used in a tree, graph, or other data structure that has 
some nodes that contain integer values (ni) and other nodes that contain 
floating-point values (nf). 

union {
  struct {
    int type;
  } n;
  struct {
    int type;
    int intnode;
  } ni;
  struct {
    int type;
    double doublenode;
  } nf;
} u;
u.nf.type = 1;
u.nf.doublenode = 3.14;

Listing 2-11: Unions



30   Chapter 2

As with structures, you can access union members via the . operator. 
Using a pointer to a union, you can reference its members with the  
-> operator. In Listing 2-11, the type member in the nf struct of the union 
is referenced as u.nf.type, and the doublenode member is referenced as u.nf 
.doublenode. Code that uses this union will typically check the type of the 
node by examining the value stored in u.n.type and then accessing either 
the intnode or doublenode struct depending on the type. If this had been 
implemented as a structure, each node would contain storage for both the 
intnode and the doublenode members. The use of a union allows the same 
storage to be used for both members.

Tags
Tags are a special naming mechanism for structs, unions, and enumerations. 
For example, the identifier s appearing in the following structure is a tag:

struct s {
  /---snip---/
};

By itself, a tag is not a type name and cannot be used to declare a vari-
able (Saks 2002). Instead, you must declare variables of this type as follows:

struct s v;   // instance of struct s
struct s *p;  // pointer to struct s

The names of unions and enumerations are also tags and not types, 
meaning that they cannot be used alone to declare a variable. For example:

enum day { sun, mon, tue, wed, thu, fri, sat }; 
day today;  // error
enum day tomorrow;  // OK

The tags of structures, unions, and enumerations are defined in a sepa-
rate namespace from ordinary identifiers. This allows a C program to have 
both a tag and another identifier with the same spelling in the same scope:

enum status { ok, fail };  // enumeration
enum status status(void);  // function

You can even declare an object s of type struct s:

struct s s;

This may not be good practice, but it is valid in C. You can think of struct 
tags as type names and define an alias for the tag by using a typedef. Here’s 
an example:

typedef struct s { int x; } t;



Objects, Functions, and Types   31

This now allows you to declare variables of type t instead of struct s. The 
tag name in struct, union, and enum is optional, so you can just dispense with 
it entirely:

typedef struct { int x; } t;

This works fine except in the case of self-referential structures that con-
tain pointers to themselves:

struct tnode {
  int count;
  struct tnode *left;
  struct tnode *right;
};

If you omit the tag on the first line, the compiler may complain because the 
referenced structure on lines 3 and 4 has not yet been declared, or because 
the whole structure is not used anywhere. Consequently, you have no choice 
but to declare a tag for the structure, but you can declare a typedef as well:

typedef struct tnode {
  int count;
  struct tnode *left;
  struct tnode *right;
} tnode;

Most C programmers use a different name for the tag and the typedef, 
but the same name works just fine. You can also define this type before the 
structure so that you can use it to declare the left and right members that 
refer to other objects of type tnode:

typedef struct tnode tnode;
struct tnode {
  int count;
  tnode *left
  tnode *right;
} tnode;

Type definitions can improve code readability beyond their use with 
structures. For example, all three of the following declarations of the signal 
function specify the same type:

typedef void fv(int), (*pfv)(int);
void (*signal(int, void (*)(int)))(int);
fv *signal(int, fv *);
pfv signal(int, pfv);



32   Chapter 2

Type Qualifiers
All the types examined so far have been unqualified types. Types can be 
qualified by using one or more of the following qualifiers: const, volatile, 
and restrict. Each of these qualifiers changes behaviors when accessing 
objects of the qualified type. 

The qualified and unqualified versions of types can be used inter-
changeably as arguments to functions, return values from functions, and 
members of unions. 

N O T E  The _Atomic type qualifier, available since C11, supports concurrent programs.

const
Objects declared with the const qualifier (const-qualified types) are not 
modifiable. In particular, they’re not assignable but can have constant 
initializers. This means objects with const-qualified types can be placed in 
read-only memory by the compiler, and any attempt to write to them will 
result in a runtime error: 

const int i = 1; // const-qualified int
i = 2; // error: i is const-qualified

It’s possible to accidentally convince your compiler to change a const-
qualified object for you. In the following example, we take the address of a 
const-qualified object i and tell the compiler that this is actually a pointer to 
an int: 

const int i = 1;  // object of const-qualified type
int *ip = (int *)&i;
*ip = 2;  // undefined behavior

C does not allow you to cast away the const if the original was declared 
as a const-qualified object. This code might appear to work, but it’s defective 
and may fail later. For example, the compiler might place the const-qualified 
object in read-only memory, causing a memory fault when trying to store a 
value in the object at runtime.

C allows you to modify an object that is pointed to by a const-qualified 
pointer by casting the const away, provided that the original object was not 
declared const:

int i = 12;
const int j = 12;
const int *ip = &i;
const int *jp = &j;
*(int *)ip = 42; // ok
*(int *)jp = 42; // undefined behavior



Objects, Functions, and Types   33

volatile
Objects of volatile-qualified types serve a special purpose. Static volatile-
qualified objects are used to model memory-mapped input/output (I/O) 
ports, and static constant volatile-qualified objects model memory-mapped 
input ports such as a real-time clock. 

The values stored in these objects may change without the knowledge 
of the compiler. For example, every time the value from a real-time clock 
is read, it may change, even if the value has not been written to by the 
C program. Using a volatile-qualified type lets the compiler know that 
the value may change, and ensures that every access to the real-time clock 
occurs ( otherwise, an access to the real-time clock may be optimized away 
or replaced by a previously read and cached value). In the following code, 
for example, the compiler must generate instructions to read the value 
from port and then write this value back to port:

volatile int port;
port = port;

Without the volatile qualification, the compiler would see this as a 
no-op (a programming statement that does nothing) and potentially elimi-
nate both the read and the write.

Also, volatile-qualified types are used for communications with signal 
handlers and with setjmp/longjmp (refer to the C Standard for information 
on signal handlers and setjmp/longjmp). Unlike in Java and other program-
ming languages, volatile-qualified types in C should not be used for syn-
chronization between threads.

restrict
A restrict-qualified pointer is used to promote optimization. Objects  indirectly 
accessed through a pointer frequently cannot be fully optimized because of 
potential aliasing, which occurs when more than one pointer refers to the 
same object. Aliasing can inhibit optimizations, because the compiler can’t 
tell if portions of an object can change values when another apparently 
unrelated object is modified, for example. 

The following function copies n bytes from the storage referenced by 
q to the storage referenced by p. The function parameters p and q are both 
restrict-qualified pointers:

void f(unsigned int n, int * restrict p, int * restrict q) {
  while (n-- > 0) {
    *p++ = *q++;
  }
}

Because both p and q are restrict-qualified pointers, the compiler 
can assume that an object accessed through one of the pointer param-
eters is not also accessed through the other. The compiler can make this 



34   Chapter 2

assessment based solely on the parameter declarations without analyzing 
the function body. Although using restrict-qualified pointers can result in 
more efficient code, you must ensure that the pointers do not refer to over-
lapping memory to prevent undefined behavior.

Exercises
Try these code exercises on your own:

1. Add a retrieve function to the counting example from Listing 2-6 to 
retrieve the current value of counter.

2. Declare an array of three pointers to functions and invoke the appro-
priate function based on an index value passed in as an argument.

Summary
In this chapter, you learned about objects and functions and how they dif-
fer. You learned how to declare variables and functions, take the addresses 
of objects, and dereference those object pointers. You also learned about 
most of the object types that are available to C programmers as well as 
derived types. 

We’ll return to these types in later chapters to explore in more detail 
how they can be best used to implement your designs. In the next chapter, I 
provide detailed information about the two kinds of arithmetic types: inte-
gers and floating-point types.


